REDUCING THE OCCURRENCES AND IMPACT OF FREIGHT TRAIN DERAILMENTS

D-Rail dissemination Meeting 12th November (STOCKHOLM)

WP 3 – Derailment analysis and prevention

WP Leader: Michel PINEAU (SNCF)
Speakers: Michel PINEAU (SNCF) & Anders EKBERG (CHALMERS)
WP OVERVIEW

1. Introduction
2. Participants & Roles
3. Deliverables
4. Results
INTRODUCTION

<table>
<thead>
<tr>
<th>Deliverable Number</th>
<th>Deliverable Title</th>
<th>WP number</th>
<th>Lead beneficiary number</th>
<th>Estimated indicative person-months</th>
<th>Nature</th>
<th>Dissemination level</th>
<th>Delivery date</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3.1</td>
<td>derailment Causes, impact and prevention assessment</td>
<td>3</td>
<td>4</td>
<td>20.00</td>
<td>R</td>
<td>PU</td>
<td>10</td>
</tr>
<tr>
<td>D3.2</td>
<td>Analysis and mitigation of derailment, assessment and commercial impact</td>
<td>3</td>
<td>7</td>
<td>30.00</td>
<td>R</td>
<td>PU</td>
<td>18</td>
</tr>
<tr>
<td>D3.3</td>
<td>Guidelines on derailment analysis and prevention</td>
<td>3</td>
<td>6</td>
<td>21.00</td>
<td>O</td>
<td>PU</td>
<td>18</td>
</tr>
</tbody>
</table>
PARTICIPANTS & ROLES

- VUT Technische Universität Wien
- CHALM Chalmer Tekniska Hoegskola AB
- POLIM Politecnico di Milano
- MMU The Manchester Metropolitan University
 replaced since July 2012 by
 HUD Huddersfield University
- LUCC Lucchini RS SPA
- DB Deutsche Bahn AG
- HARS Harsco Rail Limited
- SNCF Société Nationale des Chemins de fer Français
PARTICIPANTS & ROLES

Task 3.1 – Analysis of derailment causes, impact and prevention assessment schemes
• Leader: VUT
• Participants: HARS

Task 3.2 – Analysis & mitigation of derailment related to wheel/rail interaction
• Leader: POLIM
• Participants: DB, (MMU) HUD, CHALM, SNCF

closely integrated D3.2 and D3.3 (guideline)

Task 3.3 – Analysis & mitigation of derailment due to material fatigue & fracture
• Leader: CHALM
• Participants: LUCC, SNCF

“top–down”

“bottom–up”

all WP3 deliverables are public
Development of the Future Rail Freight System to Reduce the Occurrences and Impact of Derailment

D-RAIL

Grant Agreement No.: 285162 FP7 – THEME [SST.2011.4.1-3]
Project Start Date: 01/10/2011
Duration: 36 Months

D3.1
Report on analysis of derailment causes, impact and prevention assessment

Due date of deliverable: 31/07/2012
Actual submission date: 30/05/2013

Work Package Number: WP3
Dissemination Level: PU
Status: Final F2

Leader of this deliverable:
Prepared by:

Name: Schöbel Andreas
Schöbel Andreas
Zarembski Allan
Palese Joseph
Maly Thomas

Organisation:
VUT
VUT
HARSCO
HARSCO
VUT

Verified by:
Mark Robinson

UNEW
D3.1 Analysis of derailment causes, impact and prevention assessment schemes

- **Cause-consequence chains** of different derailment causes

- Identification of **potential mitigation measures** including estimation of application level

- Overall **evaluation approach** for mitigation measures to make a cost-benefit-analysis for the implementation of on-board and wayside train monitoring systems.
showcases for mitigation measures for derailment cause
axle rupture

T - trackside
V - vehicle side (in general)
R - vehicle side (recording car)
Y - (shunting) yard
W - workshop

a - widely known/used measures
b - already known measures, but not widely applied
c - measures, which might be relevant for the future

1...9 - technology readiness level (TRL)
Development of the Future Rail Freight System to Reduce the Occurrences and Impact of Derailment

D-RAIL

Grant Agreement No.: 285162 FP7 – THEME [SST.2011.4.1-3]
Project Start Date: 01/10/2011
Duration: 36 Months

D3.2

Analysis and mitigation of derailment, assessment and commercial impact

Due date of deliverable: 31/03/2013
Actual submission date: 03/06/2013
(15/11/2013 rev after int & ext review)

<table>
<thead>
<tr>
<th>Work Package Number: WP3</th>
<th>Dissemination Level: PU</th>
<th>Status: Final after review and revision</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Leader of this deliverable:</th>
<th>Prepared by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Organisation</td>
</tr>
<tr>
<td>Francesco Braghin</td>
<td>PoliMi</td>
</tr>
<tr>
<td>Anders Ekberg</td>
<td>Chalmers</td>
</tr>
<tr>
<td>Björn Pålsson</td>
<td>Chalmers</td>
</tr>
<tr>
<td>Dimitri Sala</td>
<td>Lucchini</td>
</tr>
<tr>
<td>Dirk Nicklisch</td>
<td>DB</td>
</tr>
<tr>
<td>Elena Kabo</td>
<td>Chalmers</td>
</tr>
<tr>
<td>Francesco Braghin</td>
<td>PoliMi</td>
</tr>
<tr>
<td>Paul Allen</td>
<td>UoH</td>
</tr>
<tr>
<td>Philip Shackleton</td>
<td>UoH</td>
</tr>
<tr>
<td>Tore Vernersson</td>
<td>Chalmers</td>
</tr>
<tr>
<td>Michel Pineau</td>
<td>SNCF</td>
</tr>
</tbody>
</table>

D3.3

Guidelines on derailment analysis and prevention

Due date of deliverable: 31/03/2013
Actual submission date: 03/06/2013
(15/11/2013 rev after int & ext review)

<table>
<thead>
<tr>
<th>Work Package Number: WP3</th>
<th>Dissemination Level: PU</th>
<th>Status: Final</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Leader of this deliverable:</th>
<th>Prepared by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Organisation</td>
</tr>
<tr>
<td>Anders Ekberg</td>
<td>Chalmers</td>
</tr>
<tr>
<td>Björn Pålsson</td>
<td>Chalmers</td>
</tr>
<tr>
<td>Dirk Nicklisch</td>
<td>DB</td>
</tr>
<tr>
<td>Elena Kabo</td>
<td>Chalmers</td>
</tr>
<tr>
<td>Francesco Braghin</td>
<td>PoliMi</td>
</tr>
<tr>
<td>Paul Allen</td>
<td>UoH</td>
</tr>
<tr>
<td>Philip Shackleton</td>
<td>UoH</td>
</tr>
<tr>
<td>Tore Vernersson</td>
<td>Chalmers</td>
</tr>
<tr>
<td>Michel Pineau</td>
<td>SNCF</td>
</tr>
</tbody>
</table>
Table of Contents
1 Introduction 10
2 Common vehicle 11
 2.1 Model parameters 11
 2.2 System 11
 2.2.1 Detherm Dynamics 11
 2.2.2 Detherm Models 11
 2.2.3 Vehicle parameters and restraint system 11
3 Deliverables due to derailment and wheel treads failures 12
 3.1 Influence of derailment on wheel treads failures 12
 3.1.1 Analysis and simulation 12
 3.1.2 Configuration of wheel models 12
 3.1.3 Results - Influence of vehicle parameters on derailment 12
 3.1.4 Conclusions - Influence of vehicle parameters on derailment 12
 3.2 Influence of system failure on wheel treads failures 12
 3.2.1 Kinetic analysis 12
 3.2.2 Influence of vehicle parameters on wheel treads failures 12
 3.2.3 Conclusion - Influence of vehicle parameters on wheel treads failures 12
4 Conclusions 13
 4.1 Analysis of derailment and wheel treads failures 13
 4.1.1 Analysis and simulation 13
 4.1.2 Influence of vehicle parameters on derailment 13
 4.2 Influence of failure modes 13
 4.3 Conclusion 13
5 Deliverables due to wheel failures 14
 5.1 Influence of wheel failure 14
 5.1.1 Analysis and simulation 14
 5.1.2 Influence of vehicle parameters on wheel failure 14
 5.2 Influence of failure modes 14
 5.3 Conclusion 14
6 Deliverables due to vehicle failures 15
 6.1 Influence of vehicle failure 15
 6.1.1 Analysis and simulation 15
 6.1.2 Influence of vehicle parameters on vehicle failure 15
 6.2 Influence of failure modes 15
 6.3 Conclusion 15
7 Deliverables due to all failures 16
 7.1 Influence of vehicle failure 16
 7.1.1 Analysis and simulation 16
 7.1.2 Influence of vehicle parameters on vehicle failure 16
 7.2 Influence of failure modes 16
 7.3 Conclusion 16
Main European derailment causes:

• Poor track geometry
 – excessive track width
 – excessive track twist
 – track height/cant failure

• Poor vehicle conditions
 – skew loading
 – spring & suspension failure

• Failures
 – axle ruptures
 – wheel failure
 – rail failures

Major causes and key parameters!
Well-founded operational limits!

Monitor the right things at the right levels
Implementable results from WP3 (as compiled in D7.1)

- 37 potential modifications ranked (low, moderate, high) in terms of cost of implementation
- 29 means of influencing the risk of derailments

Examples of “not-too-high” hanging fruit

- Improved regulations (elaborated in the UIC-led HRMS project)
- Integrated prediction of crack growth in wheel load sensors to aid planning and maintenance
- Improved design / approval guidelines for wheels and running gear
- Improved and harmonized reporting guidelines and follow-up routines based on key parameters
RESULTS – RAIL BREAKS

Influencing parameters
- impact load
- temperature
- vehicle speed
- track
- sleepers
- impact type

...
RESULTS – ALARM LIMITS FOR RAIL BREAKS

Impact load limits *versus* rail crack size

Load types:
- Bending from impacting wheel flat
- Tension from thermal loading
RAIL BREAKS – CRACK GROWTH

EXAMPLE:
Foot crack – nominal “bad case” scenario
Measured load magnitudes (average or peak for each wheel)

Equivalent “average” load

Increased growth due to cold temperature
RESULTS – FLANGE CLIMBING

Some key parameters

• wheel/rail friction
• suspension characteristics
• track twist
• side bearer vertical bump stop clearances
• geometry of isolated track defects

Some current derailment related regulations

• GM/RT 2141 (tentatively too severe)
• EN 14363 (tentatively too lenient)
RESULTS – ALARM LIMITS FOR RAIL CLIMB

Flange climbing
- axle
- longitudinal

Chassis twist (tare)
- diagonal
- 1:1.7 – stop
- 1:1.3 – maintenance
RESULTS – SLOSHING

Influence of sloshing

• increases risk of rollover (not flange climbing)
• S-curves and ~50% fill levels are worst cases
• <20% increase
Why don’t we derail today?

Measured load distribution (horizontal shift of CoG)

Mainly skewed axially or longitudinally

limits:
\[\Delta x_{\text{lim}} = \frac{a}{2} \]
\[\Delta y_{\text{lim}} = \frac{b}{9} \]
RESULTS – WHEEL DESIGN

Some key findings for web cracks

• Very slow growth in depth direction.
• For the crack to grow in the depth direction, it must be very extended circumferentially.

Fatigue sensitivity

• Increase of vertical loading
 – **straight track**: minor increase of fatigue
 – **curving and negotiation of points and crossings**: substantial increase in fatigue stresses.

• Low-stress wheels
 – better for thermal load resistance
 – more sensitive to mechanical fatigue especially due to wheel flats away from the rolling circle.
WP3 – Final remark

- The Guideline D3.3 is extensively backed by background details in D3.2

- Recommendations and suggested limits are scientifically based. This means:
 - Background assumptions and analyses are documented
 - The analyses can be extended to new and/or altered operational scenarios
 - The consequence of any deviations to recommendations can be quantified

 This promotes a sound technical discussion to obtain consensus

- The working group included representatives from across Europe (and USA), which aids in obtaining a broad view
Thank you for your kind attention